
Developing TeamDynamix Asset
Importer Configurations

Contents
Document History ... 3

Overview ... 3

Essential Concepts .. 3

External Identifiers .. 3

Rate Limiting and Batch Sizes ... 4

Running the Importer ... 4

Sample Import Configuration XML ... 5

Querying the External Database ... 6

Configuring API Credentials .. 7

Other Important Settings .. 8

External Identifier ... 8

Batch Size .. 8

Last-Execution Date .. 8

Configuring Mappings ... 8

Specifying Fields .. 9

Directly-Copying Columns ... 10

Name Matching Columns .. 10

Overview ... 10

Matching Multiple Choices ... 10

Default Value Support ... 10

When No Value is Found ... 11

Name Match Support Fields and Mapping Logic .. 11

Mapping Rules .. 12

Mapping Rule Types .. 12

Default Values ... 13

Appendix A: Asset Fields ... 16

Appendix B: Sample SCCM Query ... 17

Document History
Version Author Date Summary

1 Catherine Stock 2014-04-03 Initial version.

2 Catherine Stock 2014-06-09 Added documentation regarding support for
ODBC-based connections.

3 Jamey Stock 2017-10-20 Updated documentation to include
ApplicationID.

4 Matt Sayers 2018-05-31 Added documentation for new database
command timeout and API request timeout
settings.

5 Matt Sayers 2018-11-16 Added capabilities and documentation for
name match mappings to support choice
fields.

Overview
This document provides a guide to writing the XML configuration file needed to perform an asset

import. The import process itself is executed by a command line application running on a client's

machine. At a high level, this process is:

1. The command line application loads up the configuration from the specified XML file.

2. The application runs a query against an external database.

3. Each returned row is mapped over to an equivalent API asset instance.

4. The resulting assets are separated into batches and each batch of items is submitted to a REST

API method, which will create, update, or ignore assets as appropriate.

Essential Concepts

External Identifiers
The overall importing framework is dependent on having some sort of "external identifier" available as a

field on imported items. In the asset management system, this is the "External ID" field. Without an

external ID, items submitted to the API will not be accepted. In addition, pre-existing items in

TeamDynamix will only be updated if an item submitted to the API matches its external ID. This

prevents having runaway assets that would be generated each and every time the import process runs.

For clients that already have many assets in TeamDynamix, this means that the external ID would need

to be updated for all of them. However, in 8.6, the existing update functionality of the Excel-based asset

import (which will do duplicate checking on the basis of tag), has been extended to support updating

external IDs through this process.

The external databases that we will be importing from will have some form of identifier that uniquely

identifies an asset in its system. For example, Microsoft's System Center Configuration Manager has a

"SMS_Unique_Identifier" column that it uses to store a unique identifier for each system in its database.

Rate Limiting and Batch Sizes
To ensure availability of the TeamDynamix system for all users, the API method used for asset imports is

rate-limited. Essentially, this means that only so many calls made to the API method can be performed

by a single IP within a certain period of time.

The importer utility is smart enough to detect when it is being rate-limited, and when it encounters such

a limit, it will pause until the date/time the rate limit resets, up until a point. If it is instructed to wait

more than 10 minutes (which right now is longer than the duration of any rate limit), it will terminate

the process. This will work in the vast majority of instances, but individuals running multiple concurrent

import processes may experience issues.

In an additional step, the API method also enforces a "batch size", that is, the number of assets that may

be provided to the method at any one time. Attempts to submit more than this number of items will

result in an error. Note that the batch size is configurable on a per-environment basis, but the rate limit

restrictions will always be applied. Both the rate and batch size restrictions are included in the

documentation automatically-generated by the web API.

Running the Importer
All of the necessary files have been wrapped up within a standard installer file, which gives you the

ability to specify where the files should be located and adds appropriate Start Menu shortcuts.

The importer application itself runs as a command-line application so that it can be easily scheduled as a

recurring item and even re-used for multiple import processes (by simply pointing it at a different

configuration file every time). The importer application is used like the following:

TeamDynamix.ImportUtility.Importer –c "<configuration file>" --add

 --edit

In this sample command line, the -c switch indicates the path to the configuration file XML, and the "--

add" and "--edit" switches indicate that items should both be created and updated as appropriate.

When initially configuring an import process, the following model is recommended:

1. Run the importer without either --add or --edit flags to test that the system will properly query

the database, perform mappings, and submit items to the web API without error. Even though

items will not be imported, the batch size restriction will still be enforced.

2. Run the importer with the --edit flag to attempt to update pre-existing items, but not create

them. A suggested approach is to start out by only having a handful of items in TeamDynamix

with an external ID. Once you've validated that the import process will update those assets, you

can expand the number of updated assets by setting the external ID on the others.

3. Finally, run the importer with both the --add and --edit flags to perform a full import process. To

ensure that duplicate assets will not be added, first ensure that the appropriate external

identifier has been set on all relevant assets.

The --add and --edit flags must be explicitly specified. This prevents customers from inadvertently

making sweeping changes to their TeamDynamix asset database.

There are more command line options available to the importer, which can be displayed by running the

importer with the --help flag or without specifying any configuration file.

It should be noted that any time the importer executes successfully, it will re-save the configuration in

the same location to update the last-executed date. This means that any specific formatting and/or

comments that may be present in the XML will be removed when it is re-saved.

To preview the results of an import, a separate previewer application has been provided. This

application allows you to select an XML configuration file, which will be used to query the external

database, attempt any mappings, and highlight any warnings or errors that have been encountered.

The resulting preview shows the results of the query side-by-side with the resulting asset.

Sample Import Configuration XML
An example configuration XML file (typically with the extension ".import.xml") looks like the following:

<?xml version="1.0" encoding="utf-16"?>

<ImportConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <ObjectType>Asset</ObjectType>

 <ConnectorType>CHANGEME</ConnectorType>

 <ConnectionString>CHANGEME</ConnectionString>

 <DatabaseCommandTimeoutSeconds>30</DatabaseCommandTimeoutSeconds>

 <Query>

 CHANGEME

 </Query>

 <ApiCredentials>

 <ApplicationID>CHANGEME</ApplicationID>

 <BaseApiUrl>CHANGEME</BaseApiUrl>

 <WebServicesBeid>CHANGEME</WebServicesBeid>

 <WebServicesKey>CHANGEME</WebServicesKey>

 <ApiRequestTimeoutSeconds>100</ApiRequestTimeoutSeconds>

 </ApiCredentials>

 <ExternalIdColumnName>CHANGEME</ExternalIdColumnName>

 <BatchSize>1000</BatchSize>

 <Mappings>

 <!-- This is a mapping in which a field is directly-copied from a column returned

by the query. -->

 <SelectedMapping>

 <DestinationFieldId>CHANGEME</DestinationFieldId>

 <DirectMapColumnName>CHANGEME</DirectMapColumnName>

 </SelectedMapping>

 <!-- This is a mapping in which a series of mapping rules are evaluated and a

default value is applied in the event that none of the rules match. -->

 <SelectedMapping>

 <DestinationFieldId>CHANGEME</DestinationFieldId>

 <MappingRules>

 <MappingRule>

 <RuleType>Equals</RuleType>

 <SourceColumnName>CHANGEME</SourceColumnName>

 <ComparisonValue>CHANGEME</ComparisonValue>

 <MatchValue>CHANGEME</MatchValue>

 <MatchText>CHANGEME</MatchText>

 </MappingRule>

 </MappingRules>

 <DefaultValue>CHANGEME</DefaultValue>

 <DefaultText>CHANGEME</DefaultText>

 <ClearOnNoMapping>false</ClearOnNoMapping>

 </SelectedMapping>

 </Mappings>

 <LastExecutedUtc>0001-01-01T00:00:00</LastExecutedUtc>

 <LastExecutedAsUtc>false</LastExecutedAsUtc>

</ImportConfiguration>

Querying the External Database
The Connector element indicates which type of database is being accessed. The following connector

types are supported:

• SqlServerConnector is used to connect to a Microsoft SQL Server database.

• OdbcConnector is used to connect to a generic ODBC-accessible database.

The ConnectionString element contains the relevant database connection string. This will vary

depending on the specified connector.

The DatabaseCommandTimeoutSeconds element stores the database command timeout in seconds.

The default value is 30. The default value is used if DatabaseCommandTimeoutSeconds is not included

in the configuration file or the provided value is less than 30.

The Query element is the actual text of the query that is executed against the database. Note that the

mapping rules and logic later on do not currently provide for any data conditioning/normalization, and

therefore any necessary normalization should be performed as a part of this query. This query also

allows you to use a "@LastExecuted" parameter, the value for which will be specified by the importer

utility to allow for the retrieval of partial data sets.

An example of a query might be like the following:

<Query>

 Select

 *

 From

 MyAssetTable

 Where

 LastUpdatedDate >= @LastExecuted

</Query>

Note on Parameterized ODBC Queries

When an ODBC connection (that is, a configured Connector of "OdbcConnector") is being employed,

named parameters are not supported. When accessing databases through ODBC, the question mark

placeholder ("?") must be used in place of the named @LastExecuted parameter. This parameter is only

passed once to the provided query, and therefore only the first placeholder will be provided with a

value.

Note that because this is in XML, the ">" symbol has been escaped as ">". Other entities may need to

be similarly-escaped.

For more information about how a sample SCCM query against a SQL Server database

(SqlServerConnector) might execute, see the included appendix.

Configuring API Credentials
The ApiCredentials element stores the information necessary to connect to and authenticate against

the web API, and acts as a container for the other elements identified within this section.

The ApplicationID element contains the ID of the application into which the items will be imported. If

this is omitted, then the ID of the default Assets/CIs application for your organization will be used.

The BaseApiUrl element indicates the base URL, such as https://app.teamdynamix.com/TDWebApi/, for

the REST API.

The WebServicesBeid and WebServicesKey elements are GUIDs that are used to authenticate against

the web API using the "API User" account for the BE. This information can be retrieved from the detail

page for a BE in TDAdmin.

The ApiRequestTimeoutSeconds element stores the request timeout in seconds for all API calls this

utility needs to make. The default value is 100. The default value is used if ApiRequestTimeoutSeconds

is not included in the configuration file or the provided value is less than 100.

https://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references#Predefined_entities_in_XML
https://app.teamdynamix.com/TDWebApi/

Alternatively, authentication can be performed using ApiUsername and ApiPasswordEncrypted

elements. However, because getting the encrypted version of the password will most likely involve

developer intervention, this method is not recommended for typical use.

Finally, an optional ProxyUrl element allows you to define a proxy URL through which all API traffic will

be routed. This allows you to use an application such as Fiddler to view the raw content and response of

each API call.

Other Important Settings

External Identifier
The ExternalIdColumnName element indicates the column returned by the query that is used to

determine the external ID of any asset. This value is directly-copied from the column to the asset's

external ID.

Batch Size
The BatchSize element indicates the maximum number of assets that will be included in each API call.

As previously-mentioned, this can go no higher than the limit configured for the environment, but

smaller batches can be specified as necessary.

Last-Execution Date
The LastExecutedUtc element stores the last date/time the import process was successfully executed.

This will be automatically updated by the importer utility, but can be edited as necessary.

The LastExecutedAsUtc element indicates if the database expects this value to be in UTC. When this is

false, the importer utility will convert the last-executed date to the machine's local time (note that this

may differ from the database's local time) before providing it to the query.

Configuring Mappings
The SelectedMappings element contains all of the mappings for individual asset fields. This contains

any number of SelectedMapping elements, although you will at least need mappings for the following

required fields:

• SerialNumber or Name (only one must be provided)

• StatusID

Note that the external ID of an asset is handled automatically by the ExternalIdColumnName

configuration mentioned earlier and therefore cannot be mapped through this process.

http://www.telerik.com/fiddler

Specifying Fields
All selected mappings must have a DestinationFieldId element provided to indicate which field will be

updated by the mapping. The set of standard fields is predefined, and so a listing of available standard

asset fields is available in a separate appendix.

If an asset field does not have a mapping provided for it, the web API will ignore it when it attempts to

update pre-existing assets. This ensures that values will not be inadvertently cleared through an update

process.

Custom attributes will vary on a per-organization basis, but can still be set during the import process. To

set the value of a custom attribute, use a DestinationFieldId value in the following format:

<DestinationFieldId>CustomAttribute-<attribute ID></DestinationFieldId>

For example, you may want to set a custom attribute such as "IP Address" (with an ID of 1000) and

directly-copy it from the value of an "IPAddress" column returned by the database query. This would

entail a mapping like the following:

<SelectedMapping>

 <DestinationFieldId>CustomAttribute-1000</DestinationFieldId>

 <DirectMapColumnName>IPAddress</DirectMapColumnName>

</SelectedMapping>

With choice fields, such as SupplierID, you may want to perform a name match lookup with the

database value to find the TeamDynamix choice ID to send in the import. For example, you might have a

Manufacturer name of “Dell” in the database and you want to map that to your TeamDynamix Supplier

choice of “Dell” (with an ID of 100). To do this, you would utilize a name match mapping to dynamically

find the TeamDynamix Supplier ID for the import like the following:

<SelectedMapping>

 <DestinationFieldId>SupplierID</DestinationFieldId>

 <NameMatchColumnName>ManufacturerName</NameMatchColumnName>

</SelectedMapping>

Similarly, to name match map a custom attribute which is a choice-based custom attribute (where the

custom attribute ID is 1100), you would do the following:

<SelectedMapping>

 <DestinationFieldId>CustomAttribute-1100</DestinationFieldId>

 <NameMatchColumnName>OperatingSystem</NameMatchColumnName>

</SelectedMapping>

In other instances, you may wish to use a series of mapping rules or a default value for a custom

attribute field. When doing so for custom attributes with choices, you will need to use the ID values of

the custom attribute choices you wish to use.

Furthermore, when a custom attribute field that supports multiple values (such as a multiselect or

checkbox list) is being mapped, you can use a comma-separated list of choice IDs to represent multiple

choice selections. For example, imagine a "Roles" custom attribute (with an ID of 2000) that has

multiple choices for indicating how a particular asset is being used. Using a default role set of

"Workstation" and "General Purpose" would look like the following:

<SelectedMapping>

 <DestinationFieldId>CustomAttribute-2000</DestinationFieldId>

 <DefaultValue>3000,3050</DefaultValue>

 <DefaultText>Workstation,General Purpose</DefaultText>

</SelectedMapping>

Directly-Copying Columns
The simplest way to import values from a database query is to directly copy a value from a column. This

will typically be the case when there are plain "value" (and not "choice") fields you wish to set, such as

the serial number and asset tag. In this case, the SelectedMapping element should contain a

DirectMapColumnName element with the name of the appropriate column, such as in the example

above.

Name Matching Columns

Overview

For choice-based standard and custom attribute fields, the most common way to import values from the

query is to utilize name match mapping. This mapping type takes the column value from the database

query and looks up the actual TeamDynamix choice ID(s) from the TeamDynamix API behind the scenes.

It should be noted that all name match query values should be strings, or converted to strings, for name

matching to work properly. All name matching is performed in a case-insensitive manner, meaning that

casing differences will not impact the matching logic.

To use a name match mapping, the SelectedMapping element should contain a

NameMatchColumnName element with the name of the appropriate column, such as in the examples

above.

Matching Multiple Choices

For fields that support multiple choice values, each choice name should be separated by the | (pipe)

character in the query value used for matching.

Default Value Support

Default values and text are supported for name match mappings, similar to the examples above, by

including DefaultValue and DefaultText elements. This works exactly as default values and text work for

direct match mappings.

When No Value is Found

If a name match mapping is specified but no value is found in the TeamDynamix choice data from the

API, the record(s) in question will simply be treated as if that mapping were not specified in the

configuration at all. At this point, if there is a default value specified and it is valid, that value will be

used if a new item needs to be created.

If there is a default value specified but the item already exists server-side, the destination field will not

be updated as default values are only for creation. In this case the destination field value will not be

changed server-side.

If there is no default value specified, a warning or error message will be written to the log file depending

upon if the destination field is required or not. In this case the destination field value will not be

changed server-side.

Name Match Support Fields and Mapping Logic

The following table describes the TeamDynamix destination fields supported for name match mappings

and how those mappings are performed.

Destination Field Name Matches On Ex. Query Value(s) Ex. Result Value(s)

SupplierID Supplier Name Dell 100

ProductModelID Supplier Name|Model
Name

Dell|Inspiron 3670 150

StatusID Status Name In Use 10

LocationAndRoomID Location Name or
External ID|Room Name
or External ID

Archer Hall|Room
123
OR AH176|123

50,125

OwningDepartmentID Acct/Dept Code or Name Student
OR STU001

75

OwningCustomerID* 1. Username
2. Auth Username
3. Alternate ID
4. Organizational ID

john.doe@school.edu
OR john.doe
OR jdoe11223
OR 11223

3d89a141-4c38-4af0-
9810-63b3532a6942

RequestingDepartmentID Acct/Dept Code or Name Student
OR STU001

75

RequestingCustomerID* 1. Username
2. Auth Username
3. Alternate ID
4. Organizational ID

john.doe@school.edu
OR john.doe
OR jdoe11223
OR 11223

3d89a141-4c38-4af0-
9810-63b3532a6942

ParentID (Parent Asset) Asset External ID 88967 5000

MaintenanceScheduleID Maintenance Schedule
Name

All Fridays
Blackout

1275

Single-Choice Custom
Attributes
(Ex: OS Name)

Choice Name Windows 1252

Multiple-Choice Custom
Attributes
(Ex: Affected Versions)

Choice Name|Choice
Name|Choice Name

7|8|8.1 10,20,30

* Person choices are matched in a waterfall fallout style on the fields and order specified in the

Matches On column.

Mapping Rules
When you wish to use more complex logic, particularly in the case of "choice" fields such as supplier,

product model, or location, the system allows you to configure one or more mapping rules. Each

mapping rule will be evaluated in the order they are listed, and the system will stop evaluating mapping

rules once it finds a match.

Each individual MappingRule element contains the following sub-elements:

• RuleType - the type of rule to evaluate.

• SourceColumnName - the name of the column being evaluated.

• ComparisonValue - the value against which the source column is compared.

• MatchValue - the value to use when the rule evaluates successfully.

• MatchText - the text representation of the match value. This element is not used by the system,

but can be used by you to help describe what the match value actually represents. For example,

you could be evaluating a mapping rule for an asset's supplier and wish to have a rule for a

"VMware" supplier with an ID of 47. In such an instance, you could use a MatchValue of 47 and

a MatchText of "VMware" to act as a reminder that an ID of 47 corresponds with that supplier.

In addition, each SelectedMapping element can contain a ClearOnNoMapping sub-element to indicate

that a value should be cleared out when none of the mapping rules successfully match. Note that this

will not be valid for required fields such as supplier and product model. For such fields, you will also

want to provide a default fallback value to ensure that assets can be successfully created/updated.

Note that when the value of a particular column evaluates to null when it is referenced in a mapping

rule, the rule always fails.

Mapping Rule Types

There are many types of different mapping rules that can be evaluated through this process. Note that

some mapping rules require that the value(s) being compared fulfill some basic data type restrictions.

The set of available rule types is summarized below:

Rule Type Description Column Type
Restrictions

Equals Checks if the two values are equal. None

EqualsNot Checks if the two values are not equal. None

Contains Checks if the column contains the string represented by
the comparison value.

Text

ContainsNot Checks if the column does not contain the string Text

represented by the comparison value.

RegularExpression Checks if the column matches the regular expression
represented by the comparison value.

Text

RegularExpressionNot Checks if the column does not match the regular
expression represented by the comparison value.

Text

GreaterThan Checks if the column is greater than the comparison
value.

Numeric or
date/time

GreaterThanEqual Checks if the column is greater than or equal to the
comparison value.

Numeric or
date/time

LessThan Checks if the column is less than the comparison value. Numeric or
date/time

LessThanEqual Checks if the column is less than or equal to the
comparison value.

Numeric or
date/time

When equality or inequality checks are being performed, the column value and comparison value must

have equivalent data types. Any string-comparisons will be case-sensitive.

Type mismatches will result in the mapping rule failing evaluation.

Default Values
In some instances, you may want to provide a fall-back or standard value for an asset field. This is

particularly appropriate for required "choice" fields such as supplier, product model, or status.

Configuration of a default value is specified through a DefaultValue sub-element within your

SelectedMapping element. To aid in identifying what a default value represents, you can include a

DefaultText element as a text representation of the value. This parallels the MatchValue/MatchText

elements available for individual mapping rules, and thus the importer will ignore what has been

specified for this element.

In some instances, you may just simply wish to provide a default value without attempting any mapping

logic whatsoever. The use of a default value does not require the use of any mapping rules. This sample

mapping always sets the same status for any assets:

<SelectedMapping>

 <DestinationFieldId>StatusID</DestinationFieldId>

 <DefaultValue>219</DefaultValue>

 <DefaultText>Detected by Scanner</DefaultText>

</SelectedMapping>

Note that when a pre-existing asset is being updated through the import process, the API method will

ignore default values and instead prefer the existing field value. This means that the import process can

never "reset" a field on a pre-existing asset. This is somewhat of a limitation in functionality, but is an

acceptable trade-off to prevent clearing values that were later manually updated.

For example, if a status of "Detected by Scanner" is used for an asset when it is initially imported, and a

technician later goes in and updates the status to "In Use - Computing Lab" or "In Use - Personal

Machine", any subsequent updates will preserve what has been manually entered for the status.

For required fields, it is advisable to configure sentinel values of "Unknown". This can be used in

conjunction with the mapping logic, so that you can have a base set of mapping rules to cover the

majority of common values and fall back to that sentinel value for any edge cases.

This sample product model mapping attempts to cover some basic matching against the

"ComputerSystem-Model" field to try and identify VMware virtual machines and Cisco Catalyst 6500

devices, but will fall back to a standard "Unknown" field in the event that the model is not either of

these values:

<SelectedMapping>

 <DestinationFieldId>ProductModelID</DestinationFieldId>

 <MappingRules>

 <MappingRule>

 <RuleType>Contains</RuleType>

 <SourceColumnName>ComputerSystem-Model</SourceColumnName>

 <ComparisonValue>VMware Virtual</ComparisonValue>

 <MatchText>VMware - Virtual Machine</MatchText>

 <MatchValue>79</MatchValue>

 </MappingRule>

 <MappingRule>

 <RuleType>Equals</RuleType>

 <SourceColumnName>ComputerSystem-Model</SourceColumnName>

 <ComparisonValue>Catalyst 6500</ComparisonValue>

 <MatchText>Cisco - Catalyst 6500</MatchText>

 <MatchValue>81</MatchValue>

 </MappingRule>

 </MappingRules>

 <DefaultValue>80</DefaultValue>

 <DefaultText>Unknown</DefaultText>

</SelectedMapping>

Appendix A: Asset Fields
For the most part (with the exception of the "LocationAndRoomID" field), these fields are the same as

those available on the API asset object, and so descriptions for them can be viewed through the

standard web API documentation. When writing an import configuration, you do not need to provide

mappings for every single field, although all required fields must have a mapping.

The following standard asset fields are pre-defined:

Field Name Req'd? Format of
MatchValue/DefaultValue

Example

SerialNumber Yes* String DG749823K

Name Yes* String Conference Room Table

Tag No String TG-0001

SupplierID No Vendor ID 444

ProductModelID No Product model ID 333

StatusID Yes Asset status ID 21

LocationAndRoomID No <location ID>,<room ID> 20,30

OwningDepartmentID No Account/department ID 2048

OwningCustomerID No Person UID 3d89a141-4c38-4af0-9810-
63b3532a6942

RequestingDepartmentID No Account/department ID 1024

RequestingCustomerID No Person UID 4d0f8e0a-f168-44b1-b708-
0e03d05cdef1

AcquisitionDate No YYYY-MM-DDTHH:MM:SS 2012-06-05T00:00:00

ExpectedReplacementDate No YYYY-MM-DDTHH:MM:SS 2014-06-05T00:00:00

PurchaseCost No Number (no currency symbol) 100.00

ParentID No Asset ID 2095

MaintenanceScheduleID No Maintenance schedule ID 1988

* This is only required if the other value has not been provided. Assets must have Name or Serial #

A value of "0" indicates when no account/department is specified. Similarly, a value of "0" must be used

when no parent asset or maintenance schedule is specified. An empty UID ("00000000-0000-0000-

0000-000000000000") must be used when no customer is indicated.

The LocationAndRoomID exists as a composite field. Values for this field should be formatted in

"<location ID>,<room ID>" format, and the presence of "0" for an ID indicates that a location or

room is not being specified.

Appendix B: Sample SCCM Query
Microsoft's System Center Configuration Manager has a standard, well-documented schema which is

heavily relied-on in the query described here. This query selects from the standard "v_R_System" view,

which represents all System-identified resources within SCCM. This query also assumes that the

specified connector is for a SQL Server database (SqlServerConnector).

This query takes the following steps:

1. Top-level information about each system is stored in a temporary table. This includes

associated information about the enclosure, operating system, and the most-specific name for

the system in the organizational unit.

2. Network adapter information for all retrieved systems is stored in a separate temporary table.

The "ResourceID" column indicates which systems correspond with which network adapter. An

additional "ResourceIndex" column is stored to help identify ordering when multiple network

adapters are associated with a single system.

3. The contents of the first temporary table are returned, along with joining to the temporary

table with network adapter information. Network adapters with a ResourceIndex of 1 or 2 are

returned back as separate column sets (with "NetworkAdapter0-" and "NetworkAdapter1-"

prefixes) to flatten out the result of the query.

In addition, this query performs last-updated filtering on the basis of the "LastHWScan" value available

in the associated "v_GS_WORKSTATION_STATUS" record. The exact value used to perform this filtering

may differ on a per-organization basis.

If OBJECT_ID('tempdb..#ComputerSystems') Is Not Null Begin

 Drop Table #ComputerSystems

End

If OBJECT_ID('tempdb..#NetworkAdapters') Is Not Null Begin

 Drop Table #NetworkAdapters

End

Select

 -- Top-level attributes on the system

 rs.ResourceID as 'ResourceID',

 rs.Active0 as 'Active',

 rs.AD_Domain_Name0 as 'AD_Domain_Name',

 rs.AD_Site_Name0 as 'AD_Site_Name',

 sysoun.System_OU_Name0 as 'OU_Name',

 rs.Creation_Date0 as 'Creation_Date',

 rs.Decommissioned0 as 'Decommissioned',

 rs.Hardware_ID0 as 'Hardware_ID',

 rs.User_Domain0 as 'LastLogon_UserDomain',

 rs.User_Name0 as 'LastLogon_UserName',

 rs.Name0 as 'Name',

 rs.Netbios_Name0 as 'Netbios_Name',

 rs.Obsolete0 as 'Obsolete',

http://technet.microsoft.com/en-us/library/dd334659.aspx

 rs.Previous_SMS_UUID0 as 'Previous_SMS_UUID',

 rs.Primary_Group_ID0 as 'Primary_Group_ID',

 rs.Resource_Domain_OR_Workgr0 as 'Resource_DomainOrWorkgroup',

 rs.SMBIOS_GUID0 as 'SMBIOS_GUID',

 rs.SMS_Unique_Identifier0 as 'SMS_Unique_Identifier',

 rs.SMS_UUID_Change_Date0 as 'SMS_UUID_Change_Date',

 rs.Community_Name0 as 'SNMP_Community_Name',

 rs.User_Account_Control0 as 'User_Account_Control',

 -- System attributes

 syst.Domain0 as 'System-Domain',

 syst.Name0 as 'System-Name',

 syst.SystemRole0 as 'System-System_Role',

 -- Enclosure attributes

 encl.Manufacturer0 as 'Enclosure-Manufacturer',

 encl.SerialNumber0 as 'Enclosure-SerialNumber',

 encl.SMBIOSAssetTag0 as 'Enclosure-SMBIOS_Asset_Tag',

 encl.Tag0 as 'Enclosure-Tag',

 -- Computer system attributes

 compsys.Manufacturer0 as 'ComputerSystem-Manufacturer',

 compsys.Model0 as 'ComputerSystem-Model',

 compsys.NumberOfProcessors0 as 'ComputerSystem-NumberOfProcessors',

 compsys.Roles0 as 'ComputerSystem-Roles',

 compsys.Status0 as 'ComputerSystem-Status',

 compsys.UserName0 as 'ComputerSystem-UserName',

 -- OS Attributes

 rs.Operating_System_Name_and0 as 'OS-NameAndVersion',

 opsys.Caption0 as 'OS-Caption',

 opsys.CSDVersion0 as 'OS-CSDVersion',

 opsys.Version0 as 'OS-Version',

 -- Workstation status attributes

 wkst.LastHWScan as 'Workstation-LastHardwareScan',

 wkst.LastReportVersion as 'Workstation-LastReportVersion'

Into

 #ComputerSystems

From

 dbo.v_R_System rs

 Left Outer Join dbo.v_GS_SYSTEM syst On rs.ResourceID = syst.ResourceID

 Left Outer Join dbo.v_GS_WORKSTATION_STATUS wkst On rs.ResourceID = syst.ResourceID

 Left Outer Join dbo.v_GS_COMPUTER_SYSTEM compsys On rs.ResourceID = compsys.ResourceID

 Left Outer Join dbo.v_GS_OPERATING_SYSTEM opsys On rs.ResourceID = opsys.ResourceID

 Left Outer Join dbo.v_GS_SYSTEM_ENCLOSURE encl On rs.ResourceID = encl.ResourceID

 Outer Apply (

 /* Get the most-specific OU name, hence the length ordering involved */

 Select

 Top(1)

 oun.System_OU_Name0

 From

 dbo.v_RA_System_SystemOUName oun

 Where

 oun.ResourceID = rs.ResourceID

 Order By

 LEN(oun.System_OU_Name0)

) sysoun

Where

 /* Perform last-modified filtering */

 IsNull(wkst.LastHWScan, GETDATE()) >= @LastExecuted

/* Get back network adapters for each system above that was retrieved */

Select

 -- Network adapter options

 na.MACAddress0 as 'MACAddress',

 na.Name0 as 'Name',

 na.ServiceName0 as 'ServiceName',

 -- Configuration options

 nac.DefaultIPGateway0 as 'DefaultIPGateway',

 nac.DHCPEnabled0 as 'DHCPEnabled',

 nac.DHCPServer0 as 'DHCPServer',

 nac.DNSDomain0 as 'DNSDomain',

 nac.DNSHostName0 as 'DNSHostName',

 nac.IPAddress0 as 'IPAddress',

 nac.IPSubnet0 as 'IPSubnet',

 -- Thise is used to link back to the associated network device, and also flatten

 -- out the order to get some hierarchy

 na.ResourceID,

 ROW_NUMBER() OVER (PARTITION BY na.ResourceID ORDER BY nac.Index0) as ResourceIndex

Into

 #NetworkAdapters

From

 dbo.v_GS_NETWORK_ADAPTER na

 Inner Join dbo.v_GS_NETWORK_ADAPTER_CONFIGUR nac On na.ResourceID = nac.ResourceID

 And na.DeviceID0 = nac.Index0

 Inner Join #ComputerSystems cs On na.ResourceID = cs.[ResourceID]

Where

 /* This is a fairly-standard set of filtering parameters used to weed out unnecessary

 items such as loopback adapters. */

 na.AdapterType0 = 'Ethernet 802.3'

 And na.Description0 Not Like '%Miniport%'

 And nac.IPEnabled0 = 1

 And na.MACAddress0 Is Not Null

/* Now select back all of the base computer information and

 a flattened-out version of the network adapter information */

Select

 cs.*,

 -- Network adapter/configuration information

 na_1.[Name]as'NetworkAdapter0-Name',

 na_1.[MACAddress]as'NetworkAdapter0-MACAddress',

 na_1.[ServiceName]as'NetworkAdapter0-ServiceName',

 na_1.[DefaultIPGateway]as'NetworkAdapter0-DefaultIPGateway',

 na_1.[DHCPEnabled]as'NetworkAdapter0-DHCPEnabled',

 na_1.[DHCPServer]as'NetworkAdapter0-DHCPServer',

 na_1.[DNSDomain]as'NetworkAdapter0-DNSDomain',

 na_1.[DNSHostName]as'NetworkAdapter0-DNSHostName',

 na_1.[IPAddress]as'NetworkAdapter0-IPAddress',

 na_1.[IPSubnet]as'NetworkAdapter0-IPSubnet',

 na_2.[Name]as'NetworkAdapter1-Name',

 na_2.[MACAddress]as'NetworkAdapter1-MACAddress',

 na_2.[ServiceName]as'NetworkAdapter1-ServiceName',

 na_2.[DefaultIPGateway]as'NetworkAdapter1-DefaultIPGateway',

 na_2.[DHCPEnabled]as'NetworkAdapter1-DHCPEnabled',

 na_2.[DHCPServer]as'NetworkAdapter1-DHCPServer',

 na_2.[DNSDomain]as'NetworkAdapter1-DNSDomain',

 na_2.[DNSHostName]as'NetworkAdapter1-DNSHostName',

 na_2.[IPAddress]as'NetworkAdapter1-IPAddress',

 na_2.[IPSubnet]as'NetworkAdapter1-IPSubnet'

From

 #ComputerSystems cs

 /* Filter on ResourceIndex here to flatten out the hierarchy and prevent multiple rows from

 being returned. /*

 Left Outer Join #NetworkAdapters na_1 On cs.ResourceID = na_1.ResourceID

 And na_1.ResourceIndex = 1

 Left Outer Join #NetworkAdapters na_2 On cs.ResourceID = na_2.ResourceID

 And na_2.ResourceIndex = 2

